A Probabilistic Model for Image Processing with Positivity Constraint and Spectral Density Control

Pierre Minier¹, Jean-François Giovannelli¹ and François Orieux² ¹IMS (Univ. Bordeaux – CNRS – BINP) and ²L2S (Univ. Paris-Saclay – CNRS – CentraleSupélec)

Introduction

We propose a novel probabilistic image model that ensures **pixel positivity**, controls the **Power Spectral Density**, and provides an **explicit partition** function. This fills a gap in the literature and lays the groundwork for a fully self-supervised image deconvolution method with such properties.

Full Article

Parameter Estimation

Model Density in the Fourier Domain

 A_{ω} is CBBC \Rightarrow diagonalizable in the Fourier domain \Rightarrow faster computation.

$$f(\boldsymbol{x} \mid \boldsymbol{\eta}) = |\det \boldsymbol{\Lambda}_{\omega}|^{-1} K^{P} \exp\left(-\frac{\gamma}{2} \sum_{p=0}^{P-1} \left|\frac{\mathring{x}_{p}}{\lambda_{\omega}(p)} - \mu \mathring{\mathbb{1}}_{p}\right|^{2}\right) \mathbb{1}_{+}(\boldsymbol{F}^{-1} \boldsymbol{\Lambda}_{\omega}^{-1} \mathring{\boldsymbol{x}})$$

- F the matrix of the discretised 2D Fourier transform.
- $\Lambda_{\omega} = \operatorname{diag}[\lambda_{\omega}(p), p = 0 \cdots (P-1)]$ and $\lambda_{\omega}(p)$ the discretised FR.
- $K = \sqrt{2\gamma/\pi} / \left[1 + \operatorname{erf}(\mu\sqrt{\gamma/2})\right]$ the partition of the truncated 1D gaussian.

Bayesian Estimation

The true parameters μ^* , γ^* and ω^* generate a sample \boldsymbol{x} used for their estimation

$$\pi(\boldsymbol{\eta} \mid \boldsymbol{x}) = \frac{f(\boldsymbol{x} \mid \boldsymbol{\eta}) \pi(\boldsymbol{\eta})}{\int_{H} f(\boldsymbol{x}, \boldsymbol{\eta}) \, \mathrm{d}\boldsymbol{\eta}} \propto f(\boldsymbol{x} \mid \boldsymbol{\eta}) \pi(\boldsymbol{\eta})$$

Pseudo Code

- 1: Set η_0 to the MAP obtained by optimising $\pi(\eta \mid x)$
- 2: for t = 1 to T do
- Sample $\boldsymbol{\eta}^{\mathrm{p}}$ from $\mathcal{N}(\boldsymbol{\eta}_{t-1}, \sigma \boldsymbol{I})$ 3:
- Compute $\alpha = LP(\boldsymbol{\eta}^{\mathrm{p}}) LP(\boldsymbol{\eta}_{t-1})$ 4:
- Accept with probability α : $\eta_t = \eta^p$, otherwise $\eta_t = \eta_{t-1}$ 5: 6: end for

Validation on Synthetic Data

with $\pi(\eta)$ the uniform and separable parameter priors. In practice, the log-posterior 0.80002 noted $LP(\boldsymbol{\eta}) = \log(\pi(\boldsymbol{\eta} \mid \boldsymbol{x}))$, is used. In Metropolis-Hastings, only the target density up to a proportionality constant is needed, regardless of the proposal. When the prior is used as proposal, the acceptance ratio simplifies to a ratio of likelihoods.

Conclusions and Future Work

1. A positive white field ensures **pixel positivity**; correlation is introduced via filtering that preserves positivity. \rightarrow Interpreted as a variable change yielding an **explicit partition function**. \rightarrow Enables flexible **power spectral density modeling**.

2. Since the model's validation, several inversion strategies have been explored toward fully self-supervised deconvolution: \rightarrow ADMM, pixel-wise optimisation, Gibbs sampling... — simple methods to assess model relevance.