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Introduction
We propose a novel probabilistic image model that ensures pixel positivity, controls the Power Spectral Density, and provides an explicit partition
function. This fills a gap in the literature and lays the groundwork for a fully self-supervised image deconvolution method with such properties.
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Filtering
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Cross section of the FR used.
AR(1) extended in 2D by circular symmetry.

Model Construction x = Aωu
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Simple change
of variables

f(x | η) = |det Aω|−1KP exp
(

−γ
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)
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ω x) with parameters η = [µ, γ, ω]

Model Realisations
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Parameter Estimation
Model Density in the Fourier Domain
Aω is CBBC ⇒ diagonalizable in the Fourier domain ⇒ faster computation.

f(x | η) = |det Λω|−1KP exp
(

−γ

2

P −1∑
p=0

∣∣∣∣ ◦
xp

λω(p) − µ
◦
1p

∣∣∣∣2
)
1+(F −1Λ−1

ω
◦
x)

• F the matrix of the discretised 2D Fourier transform.

• Λω = diag[λω(p), p = 0 · · · (P − 1)] and λω(p) the discretised FR.

• K =
√

2γ/π / [1 + erf(µ
√

γ/2)] the partition of the truncated 1D gaussian.

Bayesian Estimation
The true parameters µ∗, γ∗ and ω∗ generate a sample x used for their estimation

π(η | x) = f(x | η) π(η)∫
H

f(x, η) dη
∝ f(x | η) π(η)

with π(η) the uniform and separable parameter priors. In practice, the log-posterior
noted LP (η) = log(π(η | x)), is used.
In Metropolis-Hastings, only the target density up to a proportionality constant is
needed, regardless of the proposal. When the prior is used as proposal, the acceptance
ratio simplifies to a ratio of likelihoods.

Pseudo Code
1: Set η0 to the MAP obtained by optimising π(η | x)
2: for t = 1 to T do
3: Sample ηp from N (ηt−1, σI)
4: Compute α = LP (ηp) − LP (ηt−1)
5: Accept with probability α: ηt = ηp, otherwise ηt = ηt−1
6: end for

Validation on Synthetic Data
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Conclusions and Future Work
1. A positive white field ensures pixel positivity; correlation is introduced via filtering that preserves positivity.

→ Interpreted as a variable change yielding an explicit partition function.
→ Enables flexible power spectral density modeling.

2. Since the model’s validation, several inversion strategies have been explored toward fully self-supervised deconvolution:
→ ADMM, pixel-wise optimisation, Gibbs sampling... — simple methods to assess model relevance.
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