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Introduction

We propose a novel probabilistic image model that ensures pixel positivity, controls the Power Spectral Density, and provides an explicit partition
function. This fills a gap in the literature and lays the groundwork for a fully selt-supervised image deconvolution method with such properties.
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Parameter Estimation

Model Density in the Fourier Domain Pseudo Code

A, is CBBC = diagonalizable in the Fourier domain = faster computation.

Accept with probability a: 1, = nP, otherwise 9y = 1;_1
end for
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e I' the matrix of the discretised 2D Fourier transtorm.

e A, =diag|\,(p),p=0---(P —1)] and A\, (p) the discretised FR.
Validation on Synthetic Data

o K =/2v/m/[1+ erf(u\/v/2)] the partition of the truncated 1D gaussian.
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Conclusions and Future Work

1. A positive white field ensures pixel positivity; correlation is introduced via filtering that preserves positivity.
— Interpreted as a variable change yielding an explicit partition function.
— Enables flexible power spectral density modeling.

2. Since the model’s validation, several inversion strategies have been explored toward fully self-supervised deconvolution:
— ADMM, pixel-wise optimisation, Gibbs sampling... — simple methods to assess model relevance.



