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Abstract
� Construction of a positive and correlated field by noise filtering.

� Application to a truncated Gaussian and a low-pass filter.

� Independent Metropolis-Hastings sampler to retrieve parameters.
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Positive field
U is a field with iid components according to a positive-support law

1+(u) =
P−1∏
p=0

1[0,+∞](up) = 1RP
+
(u)

Law for the components of U

� Uniform on [um, uM] with um ≥ 0

+ straightforward expression
− bounded by uM

� Truncated Gaussian on 0  chosen

� Gamma

� Levy with µ = 0

+ law stability after filtering
− undefined moments
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Filtering
Aη has positive coefficients

� preserves positivity

� adds correlation on the field U

x = Aηu

Aη controls the first and second order

� Mean : E [X ] = µt
∑

nh,nv
aη(nh, nv)

� Cov : CX(nh, nv) = γ−1
t aη ∗ a′η(nh, nv)

� PSD : SX(νh, νv) = γ−1
t |

◦
aη(νh, νv)|2

Aη represents a 2D convolution

� aη(nh, nv) the impulsion resp.

�

◦
aη(νh, νv) the frequency resp.

Aη has usefull properties

� Circulant Block-Toeplitz with Circulant Blocks (CBTCB)

� Diagonalisable in the Fourier domain

→ F is the matrix of the discretised 2D Fourier transform
→ Λη is the discretised frequency response of the filtering

Λη = FAηF
† = diag[λη(p), p = 0 · · · (P − 1)]

Fx =
◦
x = Λη

◦
u = ΛηFu

with λη(p) =
◦
aη(nh/N , nv/N) the discretised frequency response.

Example of images

SX(νh, νv) = γ−1
t × (1− η)2

[
1 + η2 − 2η cos

(
2π
√
ν2
h + ν2

v

)]−1
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Change of variables
Filtering corresponds to a multivariate change of variables.

fX(x) = |detAη|−1 fU(A−1
η x) 1+(A−1

η x)

= |det Λη|−1 fU(F †Λ−1
η

◦
x) 1+(F †Λ−1

η
◦
x)

Filtered truncated Gaussian case

fX |Θ(x |θ) = |detAη|−1KP exp
(
−γ

2
‖A−1

η x − µ1‖2
)
1+(A−1

η x)

= |det Λη|−1KP exp

−γ
2

P−1∑
p=0

∣∣∣∣∣
◦
xp

λη(p)
− µ

◦
1p

∣∣∣∣∣
2
1+(F †Λ−1

η
◦
x)

� θ = [µ, γ, η] the parameter vector

� K the partition function of U

K =

√
γ

2π
× 2

1 + erf
(√

γ
2µ
)

� µ the mean before the truncation of U

� γ the precision (inverse variance) before the truncation of U

Estimation of parameters
Given a direct observation of X , we aim to estimate θ = [µ, γ, η]

πΘ|X(θ|x) =
fX |Θ(x |θ) πΘ(θ)∫

Θ fX ,Θ(x ,θ)dθ

� πΘ|X the posterior describing our problem

� fX |Θ the likelihood (filtered and truncated Gaussian)

� πΘ the prior knowledge about the parameters

�

∫
Θ fX ,Θ(x ,θ)dθ the normalising constant

Uniform and independent priors are considered for θ.

Independent Metropolis-Hastings
Sampling πΘ|X using a Metropolis-Hastings does not require

∫
Θ fX ,Θ(x ,θ)dθ.

πΘ|X(θ|x) ∝ fX |Θ(x |θ) πΘ(θ)

By using prior distribution as the proposed law, only the (log-)posterior is needed.

LP(θ) =−
P−1∑
p=0

log(|λη(p)|) + P log(K )− γ
2

P−1∑
p=0

∣∣∣∣∣
◦
xp

λη(p)
− µ

◦
1p

∣∣∣∣∣
2

+ log
(
1[µm,µM ]×[0,γM ]×[ηm,ηM ](θ)

)
+ log(1+(F †Λ−1

η
◦
x))

Pseudo code
1: repeat
2: Sample θ0 from πΘ

3: until 1+(F †Λ−1
η0

◦
x) = 1

4: for k = 1 to K do
5: Sample θp from πΘ

6: if 1+(F †Λ−1
ηp

◦
x) = 0 do

7: θk = θk−1

8: else
9: Compute acceptance ratio α = exp(min (0, LP(θp)− LP(θk−1)))

10: Sample u from Uniform(0, 1)
11: if u < α do
12: θk = θp

13: else
14: θk = θk−1

15: end if
16: end if
17: end for

Simulated chains
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Obtained samples for θ

Issue: low acceptance rate (0.6%)  lack of diversity.

Rejected samples (under investigation)
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η appears to play a key role.

Perspectives
� Analysing 1+(F †Λ−1

ηp
◦
x) = 1+(F †Λ−1

ηp Λη∗
◦
u)  new filter Λ−1

ηp Λη∗

� Random Walk Metropolis θp = θk−1 + ε with ε ∼ N (0, σ2I )

� Another filtering: x = 1√
α
Aηu + β1 (with µ = 0 and γ = 1)

� Application to images in the astronomical, medical or industrial field.
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