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ABSTRACT This study focuses on the classification of tumours using convolutional neural networks
based on histological images. Specifically, the investigation targets neuroblastoma, a malignant tumour that
predominantly affects infants and children and develops in nerve cells. The paper begins by reviewing
existing approaches used for automatic classification of neuroblastoma differentiation grades. Subsequently,
an algorithm for partitioning databases is proposed. It is designed for biomedical imaging applications with
a limited number of images of varying dimensions to respect dataset independence, target proportions,
and equal diversity. Then, pretrained convolutional neural networks on ImageNet are modified and fine-
tuned. ResNet, VGG, and Inception families are considered. The results suggest that a proposed modified
architecture of Inception v.3 provides the best performance for binary classification, with an accuracy of
88.43% and a loss of 0.320 with cross entropy. Finally, an analysis is conducted on metric distributions
acquired from the completion of 12,500 training sessions. This analysis aims to facilitate a deeper
understanding of the proposed partition and the inherent relationship between accuracy and loss metrics.

INDEX TERMS classification, CNN, dataset independence, fine-tuning, neuroblastoma, partitioning

I. INTRODUCTION

NEUROBLASTOMA is a type of cancer that develops
from immature cells of the sympathetic nervous system,

and is often diagnosed in children under 5 years old [1].
This cancer can be aggressive and spread rapidly to other
parts of the body by metastasis. Diagnosis is usually made
by histological imaging, which provides an overview of the
composition of the tumour cells, including whether they are
mature or immature. The so-called immature cells are more
likely to spread to other parts of the body, and therefore make
the disease more severe.

To assist medical doctors in grading the severity of neu-
roblastoma, a classification system called Shimada was de-
veloped in the late 90s [2]. Figure 1 presents a simple
representation of it. This system is based on the aspect of the
tumour cells observed, taking into account their morphology
and arrangement. Nevertheless, histological analysis remains
a complex and tedious task, requiring both expertise and
time.

The investigated solution involves the use of machine
learning algorithms, and especially Convolutional Neural
Networks (CNN). CNNs are algorithms capable of process-
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FIGURE 1. A simplified version of the Shimada Classification.
FH: Favourable Histology, UH: Unfavourable Histology.

ing large quantities of images and recognizing complex fea-
tures in the data. These algorithms are therefore particularly
well suited to histological analysis. Patterns extracted by
CNNs are not necessarily the same as the ones used by
pathologists. It is therefore possible to improve the accuracy
and robustness of diagnoses, in contrast to more traditional
approaches that rely on algorithms mimicking the doctor’s
approach.

Histology is the study of tissues and cells at the micro-
scopic level. It is a fundamental discipline in anatomy and
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biology that involves the examination of tissues to understand
their structure and function. Whole Slide Images (WSIs) are
digital versions of these tissues. They are created by scanning
stained tissue sections at high resolution, and capturing an
image of the entire slide that can be numerically analysed.
In general, the classification of histopathological images is a
challenging task due to variations in illumination and shapes.

Figures 2 and 3 present examples of histological WSIs. In
this work, only Poorly Differentiated and Differentiated cells
are classified to estimate the Grade of Differentiation.

FIGURE 2. WSI labelled as «Poorly Differentiated».

FIGURE 3. WSI labelled as «Differentiated».

II. EXISTING SOLUTIONS
This section delves into the examination of four specific
methods for the classification of the Grade of Differentiation
based on Neuroblastoma WSIs.

A. SEMANTIC SEGMENTATION FOR FEATURE
EXTRACTION (OCTOBER 2008)
In October 2008, a first computer-aided evaluation of neu-
roblastoma on WSIs is presented [3]. The dataset consisted

of 36 cases of neuroblastoma, covering all three subtypes
of neuroblastic grading defined by the Shimada System. The
images were processed at various scales, starting at a resolu-
tion of 64× 64 and increasing as necessary, until 512× 512.

Semantic segmentation in the Lab colour space was used
to divide the image into five classes: nuclei, cytoplasm,
neuropil, red blood cells, and background. The segmenta-
tion employed a clustering-based approach, maximizing the
interclass distance over the intraclass distance. Only two
regions were retained: cytoplasm and neuropil. Based on it,
24 features were constructed to describe the current scale-
level studied, utilizing four kind of metrics (entropy, mean,
variance, and homogeneity) across the three channels (L,
a, b). To improve accuracy, the features from the current
scale-level and lower scale-levels were combined into a pool,
chosen through the Sequential Floating Forward Selection
(SFFS) algorithm.

B. PATCHED COMPLETED LOCAL BINARY PATTERN
(APRIL 2018)
The Patched Completed Local Binary Pattern (PCLBP)
method [4] presents another approach for classifying
histopathological images. The study uses a dataset of 1043
images from The Tumour Bank at Kids Research at The
Children’s Hospital at Westmead.

The proposed method comprises four distinct steps to
achieve its objective. Firstly, the preprocessing stage involves
dividing the entire image into square patches of equal size.
This division facilitates the extraction of localized informa-
tion from the image. Secondly, the feature extraction step
employs the CLBP algorithm to compute two types of binary
patterns, namely Sign Binary Patterns (SBP) and Magnitude
Binary Patterns (MBP), from each patch. The CLBP algo-
rithm defines a neighbourhood based on a specified radius
and number of neighbours.

Next, the feature encoding phase focuses on creating a
feature vector for each patch. This is accomplished by gener-
ating histograms of the SBP and MBP, which provide a sim-
plified representation of the image. Lastly, the classification
step involves comparing the feature vector of the target image
with those of other images. Based on this comparison, the
final classification of the image is determined.

C. CONVOLUTIONAL DEEP BELIEF NETWORK (MAY
2018)
In May 2018, a Convolutional Deep Belief Network (CDBN)
was used [5] with the same dataset of the PCLB study.

The first step involved preprocessing the images using
the whitening method. This technique aimed to equalize the
variance of the images, removing any correlations in the
intensity values. Next, the feature extraction step utilized a
CDBN. By stacking multiple Convolutional Restricted Boltz-
mann Machines (CRBM) hierarchically, the CDBN effec-
tively captured important features from the images. In this
study, three CRBM layers were used, incorporating max-
pooling to improve the results.
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Following the feature extraction, the feature encoding step
involved applying a K-Means algorithm. This algorithm gen-
erated centroids, forming a codebook that represented the
features of the images. To create a concise representation for
each image, a histogram was constructed using the formed
code words. Finally, the classification step employed a Sup-
port Vector Machine (SVM) to classify the images. Leverag-
ing the extracted features and the established codebook, the
SVM algorithm made the final classification based on learned
patterns and decision boundaries.

D. SIFT/SURF FOR A BOVW CLUSTERING (NOVEMBER
2020)
In November 2020, a study [6] pairs the classical algorithms
Scale-Invariant Feature Transform (SIFT) and Speeded Up
Robust Features (SURF) with a Bag of Visual Words
(BOVW) representation. The same dataset used in two previ-
ous covered studies [4], [5].

Firstly, the images were preprocessed by cropping them
to a standardized size. Then, feature extraction was per-
formed using SIFT and SURF algorithms. Class balancing
was implemented by downsampling the over-represented
class features. The remaining features were encoded using
BOVW with K-means clustering. Finally, classification was
conducted using an SVM. The study found that combining
SIFT and SURF did not significantly improve accuracy com-
pared to using either algorithm alone. However, the accuracy
was enhanced by employing resampling techniques such as
SMOTE or NearMiss, making the models more robust.

E. PERFORMANCE OUTCOMES
The Table 1 provides the reached performances of the four
previous algorithms.

Paper Date Framework Accuracy
[3] 10/08 Semantic Segmentation 88%
[4] 04/18 PCLB, Histogram for encoding 76%
[5] 05/18 Boltzmann Machines 84%
[6] 11/20 SIFT, BOVW, K-Means, SVM 90%

TABLE 1. Algorithms classifying the Grade of Differentiation on WSIs.

F. OTHER RELATED WORK TO THE GRADE OF
DIFFERENTIATION OF NEUROBLASTOMA
1) Classification based on Hover-Net (October 2022)
A pre-trained Hover-Net model on the PanNuke database is
used to accurately segment cells in histological images [7].
Subsequently, various morphological features were extracted
for each nucleus, including area, perimeter, convex area and
eccentricity. These data were combined with patient-related
information such as sex, age, and the nuclear degradation
rate in tumour cells (called Mitosis-Karyorrhexis Index [8]
(MKI)). Subsequently, classification algorithms like Random
Forest and K-NN were trained to classify patients into two

groups: high-risk and low-risk. The best model classifies with
an accuracy of 86.5%.

2) New characteristics for the Shimada System (January
2023)
The authors [9] recommend to incorporate image entropy (S),
fractal dimension (FD) and lacunarity (λ) features alongside
the two primary ones, namely Grade of Differentiation and
MKI [8], for a more robust and refined classification. S
measures the complexity or randomness of the image; FD
characterizes the roughness or irregularity of the structures
within the image; and λ measures the heterogeneity of the
image texture. These parameters were combined into a ma-
chine learning algorithm and reached an accuracy of 82% to
detect tumour malignancy.

III. DATABASE
A. IMAGE DIMENSION
In the context of a CNN application, it is essential for the
input images to have uniform dimensions. Typically, popular
networks like VGG, ResNet, and DenseNet use an input size
of 224 × 224 pixels. This particular size was chosen due to
its divisibility into 32 × 32 pixel squares, which facilitates
efficient parallel processing on GPU architectures. Moreover,
this size is generally sufficient for capturing the requisite
patterns for recognition. However, it should be noted that
this is not an absolute rule, as the Inception architecture, for
instance, employs a format of 299× 299 pixels.

In this study, VGG, ResNet, and Inception architectures
are examined. To ensure consistency in the datasets and
enable comparison of training sessions across different archi-
tectures, the images are cropped to dimensions of 250× 250
pixels. For models using the 224×224 pixel format, a random
crop is performed at each iteration to form an image batch
for the given optimisation process. For the 299 × 299 pixel
format, resizing is achieved through interpolation. The choice
of the 250× 250 pixel format minimizes pixel loss since the
patches do not overlap, and the dimensions of WSIs in our
database are often multiples of 250.

The use of cropping is preferred over large resizing, as it
allows for a significant increase in the number of patches
without distorting the morphology or existence of the ob-
served cells. Also, a pre-crop step is done to get rid of arte-
facts or vignetting on the border. However, patching WSIs
has a drawback: not all patches contain cells. Therefore,
patches must be reviewed and filtered.

B. DATASET DEFINITIONS
Three datasets must be created. These datasets are called
«training», «validation» and «test» . One should partition the
set of valid patches with the following ideal proportions:
70%, 15% and 15%. The training dataset is used to learn the
weights, while the validation dataset to supervise this train-
ing. The test dataset is only used when the model is trained
and allows its performance to be evaluated independently of
the data used during the training stage.
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C. INDEPENDENCE AND DIVERSITY OF THE DATASETS
The difficulty revolves around the notion of independence.
Indeed, patches obtained from the same original image pos-
sess a certain correlation and must therefore be associated
with the same dataset. Otherwise, there are two risks. Firstly,
of having an overfitted model, i.e., a model that has memo-
rized all the patterns without generalizing well. Secondly, of
being unable to detect this overfitting.

Moreover, achieving a proper partitioning is not straight-
forward, as the number of valid patches varies depending on
the original dimensions of the WSIs and the pre-cropping.

Furthermore, the datasets must be sufficiently diverse to
enable good generalization (the ’train’ dataset), effective
training monitoring (the ’validation’ dataset), and accurate
measurement of real-world performance (the ’test’ dataset).
For example, it is important to avoid a situation where very
large WSIs dominate the small validation and test datasets.

D. ITERATIVE FILING PARTITIONING
The Iterative Filing Partitioning (IFP) method is the name of
the developed algorithm to partition a given set of correlated
patches into independent and diverse datasets. One class label
is considered at a time.

1) Problem Statements
The objective is to partition a set of patches into three groups
P1, P2, and P3. This means that the pixel proportions p1, p2,
and p3 associated with the partitions P1, P2, and P3 must
sum to 1. One sets p1 > p2 ≥ p3. A key assumption of
the problem is p1 > 0.5. Indeed, a partition must contain
at least half of the available pixels, and will be associated
with the training dataset. Additionally, target diversities d1,
d2, and d3 are assigned to partitions P1, P2, and P3. In our
case, d1 = d2 = d3 = 1/3.

2) Initialisation
Patch families are sorted according to their number in de-
scending order. Families that can not be assigned to P2 and
P3 because they are too large are assigned to P1. If N1

families are assigned to P1, then P2 and P3 are deficient
in N1 families respectively. So in turn, 2 × N1 remaining
families with the largest number of patches are assigned to
P2 and P3. If a family cannot be assigned, it is ignored and
will be assigned later. In this case, another family with fewer
patches is chosen to reach N1 for P2 and P3.

IFP is sensitive to the initialization where P1 is filled with
N1 images. A hyperparameter µ is introduced such that N1 is
the number of families gathering a proportion of total pixels
greater than or equal to µ × min(p2, p3) = µ × p3. This
hyperparameter µ belongs to ]0, 1] and allows P1 absorbing
the families saturating too quickly P2 and P3, preventing
them from reaching their target diversity.

3) Iterations
Families are alternately assigned to a partition. The largest
remaining ones are always examined first. Partitions P2 and

P3 are considered filled when no remaining family can pre-
vent them from exceeding the proportions p2 + ε and p3 + ε,
or when all families have been assigned. In the end, any
remaining families are assigned to P1.

The hyperparameter ε allows an excess, because a situation
where p2 = 16% for a target of 15% is equivalent to a
situation where p2 = 14% in terms of raw error.

4) Optimisation

An exhaustive search for the optimal (µ∗, ε∗) is performed.
Let the proportions pi and the diversities di effectively
obtained be noted with an eff power. The metric (1) is
equivalent to averaging the average differences reached on
the proportions and diversities.

D(µ, ε) =
1

6

[
3∑

i=1

|pi − peffi (µ, ε)|+
3∑

i=1

|di − deffi (µ, ε)|

]
(1)

(µ∗, ε∗) = argmin
µ∈[0,1]
ε∈[0,1]

D(µ, ε) (2)

In practical terms, equation (2) means finding the coordi-
nates or areas minimizing a heatmap containing all the values
of D for the µ and ε hyperparameters, like the one presented
in Figure 4, and retaining the corresponding partition.
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FIGURE 4. Heatmap to minimize, i.e. finding the bluest point or area.

5) Discussion

In the proposed metric (1), an implicit equivalence is formu-
lated: a discrepancy of 1% in proportion is considered equally
incorrect as a discrepancy of 1% in diversity. However, the
current study does not establish that this equivalence is the
optimal choice for a CNN training application. It is possible
that alternative correspondences exist, wherein the two sums
in equation (1) are differently weighted.

4 VOLUME XX, 20XX



Minier et al.: Binary Classification of Neuroblastoma using CNNs

E. CLASS IMBALANCE
Class imbalance occurs when a dataset has one of its
classes under-represented in terms of number of images.
This leads to generalization problems during training and
makes it difficult to interpret certain metrics during the
evaluation phase. Two strategies exist: subsampling the over-
represented classes or artificially creating new images for the
minority classes.

1) Challenge
The challenge is twofold: solving the imbalance class prob-
lem with a number of transformations, and if possible in-
creasing all classes with the remaining transformations. To
achieve this, the two extreme classes must first be considered:
the one with the fewest images and the one with the most
images.

In our application framework, few images are available,
so augmentation methods are used. Only global geometric
transformations (rotation and flip) are considered, and not
transformations involving local geometric deformations, in
order to preserve the characteristics of the cells. For square
format images, there are seven transformations that do not
alter the internal geometries.

2) Assigning Transformations
Let r the ratio between the two extreme classes, then balanc-
ing requires r − 1 transformations. The collective increase
takes place at a rate of 1 for r. Therefore, by noting n the
number of transformations applied to the majority class, it is
necessary to provide r × n+ (r − 1) for the minority class.

For the intermediate classes, the same formula applies,
only the coefficient r differs, which should necessarily be less
than or equal to the minority class one.

3) Application
Let t the number of available transformations. The relation
(3) optimizes the use of these transformations, with r the ratio
of the minority class previously defined.

r × n+ (r − 1) ≤ t (3)

By isolating n, it can be deduced that all classes are
minimally augmented by

⌊
t+1
r

⌋
− 1 transformations, with

⌊.⌋ as the floor operator. However, there is no available
transformation for collectively increases all classes when
(t+1)/r < 1 ⇔ t < r−1. Therefore, the Number of Global
Class Augmentation (NGCA) is given by equation (4).

NGCA =


⌊
t+ 1

r

⌋
− 1 if t ≥ r − 1

0 else
(4)

In our database, 61 WSIs provided 1,570 patches dis-
tributed into two classes: Differentiated (D) and Poorly Dif-
ferentiated (PD). The D class was in the minority with a ratio
r = 2 on the three datasets. Balancing and augmentation

were achieved with all t = 7 transformations for D and
three transformations for the majority class PD. Table 2 gives
the raw numbers of images before and after balancing and
augmentation. The Final Augmentation column describes the
sample distribution in the datasets used for training.

Class (Dataset) Starting Balancing Final Augmentation
PD (training) 734 734 2,936
D (training) 420 840 3,360

PD (validation) 127 127 508
D (validation) 82 164 656

PD (test) 127 127 508
D (test) 80 160 640

TABLE 2. Number of samples in the datasets through transformations

F. STANDARDISATION
The order in which class imbalance addressing and standard-
ization should be performed lacks a universal rule. Neverthe-
less, it is typically advised to balance datasets before scaling
them. This recommendation stems from the fact that achiev-
ing precise classification outcomes necessitates consistent
application of scaling to all classes. This practice guarantees
that features are scaled uniformly, which can prove crucial
for various machine learning algorithms.

To standardize a given dataset of RGB images, the mean,
and the variance are computed across the three-colour chan-
nels of each image. Each pixel value is then transformed by
subtracting the mean and dividing by the standard deviation,
ensuring that the dataset is centred around zero and has a
standard deviation of one.

This operation is performed on training, validation, and
test datasets independently to ensure that each one is trans-
formed to have a similar distribution. It also prevents infor-
mation leakage between datasets, as standardization is not
performed on the entire database as a whole.

G. EXPERIMENTS
In order to test the approach developed in this section III,
several experiments are performed. The objective is to study
the behaviour of the training curves when the training and the
validation datasets are correlated. This correlation means that
patches belonging to the same family are found in these two
datasets. The test dataset always remains independent of the
two others, allowing to expose, when necessary, the training
biases.

It is important to note that the same architecture, the
same optimisation algorithms and the same hyperparameters
(learning rate, momentum, batch sizes, number of epochs)
are used. Only the database partition is modified.

1) Experiment 1: complete independence
In experiment 1 illustrated by the Figure 5, all datasets are
independent. The objective is to understand the dynamics
occurring throughout the training process for the selected
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model. This one is designed to not generalize on the data and
to be able to memorize the samples of the training dataset.

Train Valid Test

FIGURE 5. Experiment 1: training and validation datasets are not correlated.

2) Experiment 2: low correlation
In experiments 2 illustrated by the Figure 6, the datasets are
more or less correlated, but remain relatively independent
because the exchange involves a single patch per family and
some families contain more than 150. The number of patches
in each dataset remains unchanged after this exchange, so the
diversity criteria is respected.

Train Valid Test

1 patch / family

FIGURE 6. Experiment 2: training and validation datasets are lowly correlated.

3) Experiment 3: high correlation
In experiments 3 illustrated by the Figure 7, the samples
for the training and the validation datasets are randomly
assigning. The correlation is significant and stronger than in
Experiments 2.

Train Valid Test

Patches

Random   split

FIGURE 7. Experiment 3: training and validation datasets are highly
correlated.

4) Results
Each experiment was conducted ten times. Figure 8 depicts
the mean loss across epochs for both training and valida-
tion datasets. The magnitude of loss increases with greater
independence between the datasets. Experiment 2 exhibited
a similar pattern to Experiment 1 with a minor magnitude,
indicating that some correlation is present.

However, the dynamics of Experiment 3 differed signif-
icantly, with the plain and dot red curves closely aligned,
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FIGURE 8. Loss for the three experiments. Validation in solid lines, opaque
areas represent the means ± their standard deviations. Training in dotted
lines.

suggesting effective generalization to the validation dataset.
Notwithstanding, the independent test dataset resulted in a
loss of 0.7, resembling the initial epoch, implying an im-
portant correlation issue between the training and validation
datasets during the training phase.

An additional indication of correlation is in the delay
between the green and orange dotted curves and the red
one. In Experiment 3, the model requires more time to
reach a specific loss threshold due to the increased pattern
complexity resulting from the correlation.

IV. PROPOSED METHOD
A. OVERVIEW
To address the issue of a limited number of images, pre-
trained backbones are often employed with transfer learning.
However, the optimisation process remains time-consuming,
making it impractical to test all possible combinations of
hyperparameters. Consequently, only the learning rate and
the batch size are investigated in this study, while keeping the
optimizer and loss function unchanged (Stochastic Gradient
Descent (SGD) and Binary Cross Entropy (BCE)).

To begin, a preliminary step is taken to identify promising
backbones that require minimal modifications to the original
architecture. These selected backbones are then subjected to
more time-intensive strategies for further evaluation. The first
strategy involves introducing non-linearities at the end of the
backbone, while the second one entails unfreezing additional
layers from their original weights. Figure 9 provides an
overview of all aforementioned procedures.

B. METRICS
1) Search Grid
During the training process, a level of randomness is present.
Hence, when searching for optimal hyperparameters, such
as the network version, learning rate, or batch size, several
training sessions are conducted using the same values.
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FIGURE 9. Overview of the method.

2) Limitations of Validation Curves
In general, the curves obtained on the training dataset are bet-
ter than those on the validation dataset. The reason is that the
optimisation is performed on the training one. Nevertheless,
in few and rare cases, a particular initialization can lead to
the curves where the validation is better than the training
on the first epochs. In such scenarios, solely relying on the
validation curve to determine the performance of the model
is inadequate.

For the accuracy, the maximum of the minimum of the
two curves is considered. For the loss, the minimum of the
maximum of both curves is considered since the loss must be
minimized, and the accuracy maximized.

C. CNN BACKBONES
1) VGG
Visual Geometry Group (VGG) [10] repeats small (3x3)
convolution blocks several times and stack them on top of
each other. The dimension reduction is performed by max
pooling layers: it keeps a single maximum value for an entire
window.

The last layer of the VGG architecture is a fully connected
with 4096 inputs and 1000 outputs for the 1000 ImageNet
classes. The classification part is independent of the versions
and consists of 3 fully connected layers. Only the number of

convolutional layers becomes more important as the versions
are higher. VGG is available in four versions: 11, 13, 16, and
19. The relationship between the version v and the number of
convolutional layers c can be expressed as v = c+ 3.

2) ResNet
Residual Network (ResNet) [11] uses basic modules that con-
tain two parallel branches. The main one performs a linear
transformation, and the residual one adds the original input
to the output of the main branch. This avoids the problem
of the vanishing gradient that occurs when the depth of the
network is increased.

The last layer of the ResNet architecture is a fully con-
nected layer that varies in the number of inputs. For versions
18 and 34, it has 512 inputs, while for versions 50, 101, and
152, it has 2048 inputs. This layer has 1000 outputs and a
bias term. The 1000 outputs correspond to the probability of
each of the 1000 classes in the ImageNet dataset.

3) Inception
Inception [12] combines several different types of convo-
lution blocks into a single module. These blocks include
convolutions of different filter sizes (1x1, 3x3, 5x5) and
pooling operations. The objective is to allow the network to
capture patterns at different spatial scales. There are several
versions of Inception, ranging from Inception v.1 to Inception
v.4. Its final layer is a fully connected with 2048 inputs and
1000 outputs.

4) Performance on ImageNet
Table 3 presents the performance on ImageNet of the back-
bones previously discussed. Weights leading to these re-
sults are available online at https://pytorch.org/vision/stable/
models.html#classification.

Acc @5 denotes the accuracy of accurately identifying the
class within the first five predicted categories.

FLOPS stands for "Floating Point Operations Per Second.
It is a metric used to measure the computational cost of
training architecture models.

Backbone Acc @1 Acc @5 No. Params FLOPS

ResNet-18 69.76% 89.08% 11.7M 2B
ResNet-34 73.30% 91.42% 22M 4B
ResNet-50 76.15% 92.87% 26M 4B

ResNet-101 77.37% 93.56% 45M 8B
ResNet-152 78.31% 94.06% 60M 12B

VGG-11 69.02% 88.63% 133M 8B
VGG-13 69.93% 89.25% 133M 11B
VGG-16 71.59% 90.38% 138M 15B
VGG-19 72.38% 90.88% 144M 20B

Inception v.3 77.29% 93.45% 27.2M 5.71B

TABLE 3. Pre-trained backbone performances on ImageNet.

Other pre-trained backbones on ImageNet can perform a
classification task. These include the EfficientNet [13] and
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DenseNet [14] families. But our study is limited in time,
and so arbitrary choices lead to these technologies being
discarded.

V. STRAIGHTFORWARD ADAPTATION
A. IDEA
The straightforward adaptation involves making minimal
modifications to the architecture. Specifically, the final layer
must be modified to have a number of outputs that corre-
sponds to the number of classes being predicted. Exception
in the case of binary classification where a single output can
be adequate, as illustrated by Figure 10. The adapted layer
is subsequently trained using the specific dataset. The other
layers keep their original weights.

CNN
Classifier

1x1x1000

Softmax

(a) ImageNet Classifier (pretrained).

CNN
Classifier

1x1x1

Sigmoid

(b) Binary Classifier (used).

FIGURE 10. Straightforward adaptation of the classifier.

B. RESULTS
Figure 11 shows the performance of the different backbones
considered with a straightforward adaptation. Three families
of backbones are delimited by dotted grey lines: Inception,
ResNet and VGG. The optimisation is performed on the

FIGURE 11. Best loss and corresponding accuracy for the studied backbones
with a straightforward adaptation.

loss only, and the corresponding accuracy at the same epoch

is given. The best backbone according to both metrics is
Inception v.3 with an accuracy of 85.9%.

An interesting point from this figure is the noticeable
behaviour when considering more and more sophisticated
VGG architectures. As the number of convolutional layers
increases, the loss drops. However, there is no proportional
or simple link between the accuracy and the loss, whereas
there is a kind of mirror effect for ResNet curves.

The best ResNet architectures are versions 18 and 152.
Unlike VGG, loss does not decrease with increasing versions.
This can be explained by the variation in the classifier part. In
fact, the last layer is a fully connected layer that varies in the
number of inputs. For versions 18 and 34, it has 512 inputs,
while for versions 50, 101, and 152, it has 2048 inputs.

Finally, promising backbones, as named in Figure 9, are
Inception v.3, ResNet 18, ResNet 152 and VGG 19. In
the following, more computational strategies are tested to
improve their respective loss.

VI. NON-LINEAR OUTPUT EXTENSION
A. IDEA
A more computational approach consists in keeping the
backbone with its trained weights and replacing the last layer
with more than one to be trained. Between these new layers, a
non-linearity function is added. This gives the network more
degrees of freedom during the training phase.

FC (4096, 2048)

Backbone

Leaky ReLU

Dropout

FC (2048, 1024)

Leaky ReLU

Dropout

FC (1024, 1)

Sigmoid

FIGURE 12. Example of a non-linear output extension. Two non-linearities are
added. FC(a, b): Fully Connected with a inputs and b outputs.

The added layers are fully-connected, and the number of
inputs is halved from the previous one. A dropout of 0.5 is
set to randomly select half of neurons and ignore them during
one epoch to prevent overfitting. Figure 12 illustrates this
kind of classifier with 2 non-linearities in yellow.

B. RESULTS
Figure 13 provides the results for the non-linear output ex-
tension strategy. The loss is given as a function of the number
of non-linearities introduced. The abscissa 0 corresponds to
the result obtained with the straightforward adaptation with
the addition of 0 non-linearity (figure 11). Each point was
obtained via a search grid.

For all tested backbones, a right-chosen extension provides
an equal or a better loss than the straightforward adaptation.
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FIGURE 13. Loss obtained with a non-linear output extension.

In particular, the Inception v.3 backbone with four non-
linearities added reaches a loss of 0.278. Once a certain
number of layers have been added, the loss function becomes
higher.

The red opaque region represents the loss obtained from
the training and validation datasets at epoch 0. It corresponds
to the average ± standard deviation obtained from all the
training sessions carried out during this work. Within this red
domain, models are akin to random decision-making. This
area is justified later, in section IX.

VII. PROGRESSIVE UNFREEZING
A. IDEA
In the context of CNN, first layers extract general features,
while last layers become more specific to the problem being
studied. The straightforward adaptation approach consists in
modifying only the last layer to fit the number of expected
outputs. This layer is represented in orange in Figure 14.

Untrainable Layer
Frozen Trainable Layer
Unfrozen Trainable Layer

Progressive unfreezing

Raw Unfrozen Trainable Layer

FIGURE 14. Example of a network with four unfrozen layers which are
fine-tuned, while the last one is still trained from a random initialisation.

This section develops this approach further. The weights

of the last layer are still randomly initialized, and a certain
number of layers preceding the last one are unfrozen and
trained from the ImageNet initialization. This idea is illus-
trated by the red arrow in Figure 14: more and more layers
are unfrozen in order to find the right tuning approach.

B. RESULTS
Results are given in Figure 15. The approach seems appro-
priate for VGG 19. Indeed, a gain of almost 0.2 on loss is
observed: this corresponds to a reduction of 40% compar-
ing to the straightforward adaptation. Progressive unfreezing
is optimal here for six layers initialized using ImageNet
weights. Beyond that, the amount of data does not seem to
allow optimisation deeper into the network.

0 1 2 3 4 5 6 7 8 9 10
Number of layers with unfrozen ImageNet weights

0.3
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0.5

0.6

0.7
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ss

Loss without training
Backbone

Inception3
ResNet18
ResNet152
VGG19

FIGURE 15. Loss obtained with the progressive unfreezing strategy.

For other networks, the approach seems less convincing:
in particular for Inception v.3. This can be explained by its
parallel architecture, which requires many more layers to be
unfrozen. However, there is a risk that fine-tuning will no
longer be possible, and the loss will increase, as is the case
with VGG 19 with more than 7-8 unfrozen layers.

VIII. RESULTS SUMMARY
The table 4 summarizes the best metrics obtained for the
three adaptation strategies studied. The model retained is In-
ception v.3 with an extension of four non-linearities. Figures

Strategy CNN Modification Loss Acc.
Straightforward Inception v.3 / 0.322 85.90%

Extension Inception v.3 4 non-linearities 0.278 88.36%
Unfreezing VGG 19 6 unfrozen layers 0.282 88.09%

TABLE 4. Best results on the validation dataset

16 and 17 show training curves of the best training session
performed, which led to a loss of 0.278 on the validation
dataset. The learning rate is 3 × 10−5, the batch size 8,
and the optimizer SGD. For those same parameters, on the
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FIGURE 16. Best loss curve. Obtained with Inception v.3 as backbone and an
extension of four non linearities as illustrated on Figure 12.
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FIGURE 17. Accuracy curve corresponding to Figure 16.

10 training sessions performed, the mean of the best loss is
0.310 and the mean of the best accuracy 86.95%. On the test
dataset, independent of those used for training, the loss is
0.320 and the accuracy is 88.43%.

IX. DISTRIBUTION
Throughout this study, a total of 12,500 training sessions
were conducted, generating a substantial volume of data.
Those results offer ample opportunity for analysis. Leading
to a better comprehension of the metrics under investigation,
namely the loss and accuracy, as well as the performed
database partitioning.

A. LOSS DISTRIBUTION WITHOUT TRAINING
Figure 18 depicts the distribution of the loss across indi-
vidual training sessions conducted at epoch 0. It represents
the initial state of the model prior to any optimisation. It
is noteworthy that the distributions of used datasets in the
training process show a reassuring level of overlap.

Without few outliers after 0.85, this loss distribution seems
to be Gaussian. This is why the loss without training is
represented by an area of the mean ± the standard deviation
in Figures 13 and 15.
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FIGURE 18. Loss distribution without training. Mean: 0.705, standard
deviation: 0.042.

B. ACCURACY DISTRIBUTION WITHOUT TRAINING
Figure 19 gives the equivalent of Figure 18 for the accuracy.
The result is quite different and highlights properties of the
datasets and the metric itself.
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FIGURE 19. Accuracy distribution without training. Mean: 50.0%, standard
deviation: 9.95%.

The average obtained is 50%, which is usual for a binary
random classification. However, the distribution does not
have a Gaussian shape due to the presence of two peaks
around the mean value. One possible explanation lies in the
correlation between the patches in large images used in the
different datasets. If a patch is classified in a certain way, it
is likely that the rest of the patches will also be classified
in the same way, resulting in an entire part of the dataset.
The imbalance arises from the fact that the number of patches
extracted is not the same for each WSIs.

Therefore, the binary nature of the accuracy affects the
distribution. However, this is not the case for the distribution
according to the loss function, as the loss is continuous.
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C. LOSS AND ACCURACY ON A 2D DISTRIBUTION
Figure 20 shows a 2D histogram describing the distribution
of the pairs (accuracy, loss) for common epochs through all
training session performed. A strong match is indicated by
lighter colours. It can be seen that the relationship between
accuracy and loss is non-linear and quite diffuse (represented
by purple areas), although a trend can be discerned in yellow-
orange.
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FIGURE 20. Loss and Accuracy distribution on a 2D histogram with a
logarithmic scale.

This clearly shows that these two metrics are different and
both deserve to be analysed with their various properties in
mind.

X. CONCLUSION
The state of the art proposes solutions for classifying neurob-
lastoma images with scores ranging from 84% to 90%. The
present study reaches this level with a score of 88.43% for
binary classification.

The approach studied uses CNN, and requires datasets to
train, supervise and test models. These datasets are made
from a database with certain characteristics that require
particular attention: variable image dimensions, and a low
number of images for Deep Learning applications. This led to
the development of a partitioning algorithm that takes into ac-
count target proportion and diversity criteria, before increas-
ing the data. These constraints are in addition to respecting
dataset independence. The underlying question behind this
independence criterion is as follows: can non-overlapping
patches from the same image distort the interpretation of
standard metrics such as accuracy or the loss function? A
simple experiment was set up, and the conclusion was clear:
Yes, because these patches are still correlated. They should
therefore be assigned to the same dataset (training, valida-
tion, or test) and not mixed.

The selected model is based on the architecture of In-
ception v.3, but it is worth mentioning that VGG 19 also
yields interesting results. Both models have demonstrated

good performance, albeit employing different strategies. The
metrics on Inception v.3 are refined by adding non-linearities
at the top of the network while freezing the entire backbone
with the pre-trained weights from ImageNet. On the other
hand, the most relevant approach for VGG 19 is to retain the
original architecture while fine-tuning not only the last layer
but all classifier layers and four layers of the convolutional
part.

XI. FUTURE WORK
It should be noted that this study is not exhaustive, as it only
explores three major families of CNN, while other families
such as EfficientNet or DenseNet exist. Additionally, the
classification performed in this study is binary, whereas the
Schimada system recommends three classes: Poorly Differ-
entiated, Differentiated, and Undifferentiated for the studied
tumour. It would be beneficial to consider adding the missing
class to provide a comprehensive model.

XII. LIMITATIONS
It is important to acknowledge that the dataset used in this
study consisted of only 61 WSIs, which were later trans-
formed into 1,570 patches and further augmented to 8,608
samples. This database size is relatively small for training or
fine-tuning certain CNN architectures that typically possess
millions of parameters.

Only SGD was utilized for model optimizations. Other
optimizers, such as Adagrad or Adam, exist that could po-
tentially enhance model performance. However, exhaustively
testing all available optimizers would require significant time
and/or higher computational power. Therefore, we chose to
focus on SGD as the baseline optimizer, striking a balance
between expected performance and available resources.
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